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Abstract. We~sNdy tw*dimensional Brownian motion in an ordered periodic system of line= 
reflecting barriers using the sampling method and canformal uansformations. We calculate the 
effective diffusivity for the Brownian particle. When the periods are fixed but the length of the 
barrier goes to zero, the effective diffusivity in the direction perpendicular to the banien differs 
from the standard one by a term of order s2 where c is the length of a barrier. 

1. Introduction 

Brownian motion in the presence of absorbing traps is a problem related to various physical 
phenomena, e.g. diffusion limited reaction [l-31, diffusion limited aggregation [4,5], fluids 
in porous media [6,7] and  diffusion^ of photons in a random or turbid media [SI. In general 
the study of the Brownian motion in'systems with either  absorbing or reflecting barriers 
(or the combination of both) has great potential applications in various disciplines such as 
biology, chemistry or physics [9]. In many disordered systems the transport properties are 
closely related to that of the Brownian motion. Recently we, have studied the problem of 
the Brownian motion in a periodic system of absorbing traps [lo]. 

Brownian motion in ~ a system of periodic reflecting obstacles has been extensively 
studied, see e.g; a classic book [I  I]; see [12] for some of the most recent developments. It 
is known that, on the large scale, the process behaves like the ordinary Brownian motion 
with different diffusion coefficients. However, no explicit formulae for effective diffusivity 
can be given except in trivial cases. One can approach the problem using partial differential 
equations [21]. We will show how the methods developed in [lo] can be applied to calculate 
effective diffusivity in a special non-trivial case. We will also derive an asymptotic formula 
for the effective diffusivity when the length of reflecting line segments goes to zero. 

We will consider a two-dimensional (ZD) ~Brownian motion in a system of linear 
reflecting barriers, as shown in figure 1. The system is periodic in the x-direction with 
period A + B.  The size of the gate. between the barriers on a line is A and the size of a 
barrier is B.  The distance between the lines is ~ / 2  and this sets the length scale in the 
system. Unlike in the previous case [lo], here we do not demand periodicity in the y -  
direction. Instead, the second period is given by a vector (C. ap). Whenever a Brownian 
trajectory hits a black line (barrier) it is reflected with the normal vector of reflection (for the 
discussion and applications of reflected Brownian motion with oblique angle of reflection 
see e.g. [13]). In order to find the effective diffusivity  we^ wili employ the conformal 
invariance'of Brownian motion [14], i.e. the invariance of Brownian motion under local 
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Figure 1. The system of reflecting bariiea with period A t B along the x-axis and shin C 
between the lines. The size of the gate is A and the disrance W e e n  two neighbouring lines 
of gates is n/2. 8 is the inclination of the channel formed by the gates (tan@ = n/2C).  

rotations and local changes of spatial and temporal scale, and the sampling method for the 
Brownian motion [15, p 4131. 

The conformal invariance property has been a working tool in the case of 2D critical 
systems [16] and in 2D polymer systems modelled as self-avoiding random walks [17]. In the 
case of ZD critical systems, conformal invariance is a symmehy of the critical system which 
gives powerful information on the dynamics (critical exponents). In this work conformal 
invariance is used as a purely technical tool. 

The sampling method corresponds to the detection of the Brownian particle in some 
prescribed regions in space. It is used to compute averages over the ensemble of Brownian 
trajectories. We will use a technique known as the ‘optional sampling theorem’ [15, p 4381. 

Before we proceed, let us consider a simple case which provides us with a quick insight 
into the problem. Let Z ( t )  = (Z,(r), Z&)) be the location of the reflecting Brownian 
particle after time t .  The distribution of Z(t)/fi  approaches a Gaussian distribution p for 
large F [ll]. Let R = ( X ,  Y )  have p distribution. This distribution is characterized by only 
three cumulants [9]: (X’), (Y’) and ( X Y )  because (X) = (Y) = 0 due to the symmetry. 
At this point we shall consider a simple limit. In the case when the size of the barriers 
approaches zero we find by symmetry the following standard result: 

1 
2R p ( x ,  y )  =~-  exp (-x’/z - y2/2). (1.1) 

For convenience the diffusion constant has been set to 1 throughout the paper. The level 
curves in this case (the probability density p is the same at ‘each point of such a curve) 
are circles and the motions along the x -  and y-axes are uncorrelated, i.e. ( X Y )  = 0. The 
averages over the ensemble of Brownian trajectories will be denoted (. . .)B, while (. .) will 
be the average obtained from the asymptotic distribution. 

We note that in every system of reflecting barriers parallel to the x-axis, the barriers do 
not disturb the motion along them (i.e. in the x-direction) thus the distribution along x is 
the same as for the system with no barriers (1.1) and so (X’) = 1. 

Consider the case when neither gates nor traps have zero length. The reflecting barriers 
have a damping effect on the motion in every direction which is not parallel to the x-axis. 
In other words, ((Xcos6’+ Ysin6’)’) c 1 for every angle B E (0 ,~) .  Since (X’) = 1, the 
level curve of p must be an ellipse whose long axis is parallel to the x axis. Hence, the 
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distribution for the system of reflecting barriers is given by the following formula: 

We see that ( X U )  = 0 in all cases. As could be expected (Y2)  < 1. In the rest of this paper 
we compute (Y2)  using the conformal transformations and the sampling method. From now 
on we shall assume that we have reached the asymptotic limit, so all our calculations hold 
for large times only. 

The paper is arranged as follows. In section 2 we present our sampling method 
which is used to calculate the aforementioned averages. In section 3 we use conformal 
transformations to obtain the density of the hitting (probability) distribution [lo] (or in other 
words the transition probabilities [9], or density of harmonic measure [U, p 13; 181) in our 
scheme. In section 4, we present the formulae for the averages using the sampling method 
described in the previous sections. In section 5 we give an explicit asymptotic formula for 
(Y2)  in the case of vanishing barrier size. The numerical results and the discussion are 
presented in section 5. Some of our calculations have been relegated to appendices. 

2. Sampling of the Brownian motion 

The sampling method corresponds to detection of the Brownian motion only at selected 
points in space. The particle will move through the gates. Once it starts from a gate on a 
given line we set our ‘detectors’ on the neighbouring lines. The particle starting at time T(0)  
reaches a neighbouring line at time T(1). It can either enter a gate or hit a barrier. If it bits 
a gate we set ow ‘detectors’ on the lines below and above the gate. It may also reach the 
upper line and hit a barrier from below, or reach the lower line and hit a barrier from above. 
Suppose it hits a barrier on the line above. Once it does so we set our detectors on the same 
line and on the line below. If it hits a barrier on the line below we set the detectors on 
the same line and the line above. We continue this procedure using three starting schemes: 
from the gate, from below the barrier and from above the barrier, and monitor the points 
where the particle hits the lines according to the aforementioned scheme. The consecutive 
times when the Brownian particle is observed will be called T(O), T(1). T(2) .  etc. Other 
sampling schemes are possible and some of them are much simpler but they do not seem 
to be amenable to numerical calculations. 

For each step in our sampling scheme we introduce a transition vector 

V ( k )  = Z(T(k))  - Z(T(k - 1)) (2.1) 

for the transition between the moments T(k  - 1) and T(k)  of detection of the kth step. By 
a version of the central l i t  theorem for dependent random variables I191 the distribution 
of the random  variable^ 

, . .  

approaches, for large m, a Gaussian distribution. Let W = (Wl, WZ) have this limiting 
distribution. Then W / i  = R in the sense of equality of distributions (see previous section 
for the definition of E). Here i is the expected value of the duration of the single step in 
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our sampling method. The relation between W and R is easy to understand if we note that 
T(m) = mf + O ( m .  We also have 

for i = 1,2. We will assume that the initial distribution of~the process is uniform on a 
fixed line. Then the process is in the stationary regime and we have ( q ( k ) & ( k  + l ) ) B  = 
(Vj(l)Vi(l + I ) ) B  for every k and I 0. The covariance (&(k)&(& +I) )~-goes  to zero 
exponentially fast as 1 goes to infinity. These two facts and an easy calculation show that 
(2.3) may be simplified as follows: 

(2.4) 

One can also express the cumulants of R = (X, Y )  in terms of those of W = (W,, W,) by 
noting that (X’) = 1. In particulk we have 

Before we can calculate the ensemble averages ((- . .)B) in (2.4) we have to specify the 
transition probabilities between successive steps. It is done in the next section. Additionally 
we note that the time variable will not enter into the calculations. 

3. Transition probabilities 

According to our sampling scheme we have two general situations: start at the time T ( k -  1) 
from a gate or start from a barrier (the cases of the start from above and below a barrier are 
symmetric). The ‘detectors’ are on two lines at a time. In both cases we have to compute 
transition probabilities of reaching these lines. These two different situations are shown 
schematically in figures 2(u) and 2(b). 

The case when we start from a gate corresponds to a stripe of width x where the 
starting point is in the middle of the swipe and the particle may be reflected by barriers in 
the middle of the stripe. This situation is equivalent to a stripe of the same width with no 
reflecting barriers in the middle. The reason is that the hitting place on the upper or lower 
line depends on the place where the particle leaves the middle line for the last time but this 
place is not affected by the presence of the barriers. 

In the case of the start from above a banier the ‘detectors’ are placed on the line, above 
and on the same line, except that there are no detectors on the barrier from which the 
particle starts. By using reflection, this situation is equivalent to a stripe of width ir with 
two half-lines in the middle and a single gate between the half-lines (figure 2(b)). In this 
case, the length of the gate is equal to B ,  i.e. it is the same as the length of the barrier in the 
original stripe. The hitting probabilities in the new stripe correspond to those in the original 
stripe of width a/2 by symmetry with respect to the middle line. One has to multiply the 
probabilities by 2 or, in other words, sum the probabilities of hitting the points in the upper 
and lower part of the stipe in order to obtain the probabilities in the original stripe. 
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Figure 2. (a) The domain used to calculate the one-step transition probabilities for the panicle 
starting from a point PO in a gate. The reflecting barriers in the middle of the stripe can 
be removed. The probabilities of hitting ‘detectors’ on solid lines are not changed. Here 
g ( r )  = exp(z) and LL = exp(ro). (b) The domain,used to calculate the oneitep transition 
probabilities for the particle starting from a point z above a barrier. The probabilities are 
the same as for the panicle starting from a gate of length B in a stripe of double width 
with two half-lines removed. The ‘detectors’ are placed on both solid lines and both sides of 
each half-line in the transformed domain. Here g(:) = J(exp(2z) - l)/(exp(2B) - exp(Zz)), 
ZI = J(exp(2zo) - l)/(exp(2B) - exp(h ) ) ,  g(no) = U, = ie-’, g(bo) = bl = -iecB, 
g(co) = ct = i, g(d0) = dl = -i, g(0) = 0. g ( B )  = 0 . i f & .  ’ ’ 

In order to find transition probabilities we use conformal transformations. From now 
on we shall use complex variables z. Let h(z,  z’)dz’ denote the probability that the particle 
starting at point z will reach the point z’ rt dz’/2. This probability is easy to find for the 
half-plane bounded by the imaginary axis. We have, in this case, the Cauchy distribution 
[ZOI 

ho(z, z‘) = Jrlz - 2‘12 
(3.1) 

where z is any point in the right half-plane and z’ lies on the imaginary axis. Now we can 
transform the stripes shown in figures 2(u),(b) onto +e half-plane and the probabilities will 
transform according to the following formula: 

where h, ho are the transition probabilities for the stripe and half-plane, respectively, and 
g is a oneto-one mapping of the stripe onto the half plane. In the situation shown in 
figure 2(u) 

g ( i )  = exp(z) (3.3) 
while for the figure 2(b) we have 

(3.4) 

In both cases the mapping is onto H = {z : Re(z) > 01. The detailed discussion of these 
c&ulations has been relegated to appendix A. 
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4. The sampling averages 

In this section we shall give the formulae for the average (q ( l )V , (k ) )~  which appear in 
(2.4). Once we have these averages the computation of (YZ)  (see (1.2)) is straightforward 
as discussed in section 2. 

First of all we introduce a new variable, .? 

.? = ( x ,  n n / 2  8) (4.1) 

where x denotes the x-coordinate and nn/2 gives the y-coordinate (n is an integer). If x 
is in a gate then /J = 0, if x is just below a barrier then ,3 = -1 and if it is just above 
a barrier then B = 1. Thus B describes three. different starting positions for a step in our 
sampling scheme. Let Pz(2p-1, 4) be the transition probability for the kth step. It is easy 
to see that 4 vanishes unless one of the following conditions is satisfied: 

(1) Bp-1 = 0 and np - nk-1 = -1, +l; 
(2) Bp-1=+1andnp-np-1=+1,0; 
(3)  P p - 1  = -1 and np - np-1 = -l,O. 

Moreover, Pz(.?p-l, 8) vanishes when: 

(i) &I = +1, = +1 and np - np-l = +l; 
(ii) p p - 1  = +I, P p  = -1 and nk - np-1 = 0;  
( i s i ) p p - l  = -1, pp = -1 and np - np-1 = -1; 
(iv)Bk-l = -1, ,9~ = +1 and na - np-1 = 0. 

Pz is directly related to transition probabilities discussed in section 3 and appendix A. 
For example, suppose that i p - I  = (xp-1,np-~ir/2; 0) and .?p = (xi ,  (nr-1 + 1)1~/2; -1). 
Then (A.2) yields 

P 2 ( . ? k - l r 4 ) h  = P(xk-I;xk --dXw/2,Xk +dXk/2) 
1 

- arctan(exp(xp - dXk/2)/exp(x&1))). 

Now we can write the average (v~( l )Vl (k ) )~  in the following form [SI: 

= -(arctan(exp(xp + drx/2)/ exp(xc-1)) 
IT 

(4.2) 

(4.3) 

where PI is the initial distribution for 4. A similar formula holds for (Vz(l)Vz(k))~: 

In order to simplify calculations we introduce a new transition probability, Q(i, i), 
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where2=(x,O;B),i=(z,0;B’).j=(m(A+B)+Cn+z,nir/2;~),O<x.z < A + B ,  
and n = 0, &l. The new transition probability enables us to deal with the interval (0, A+B) 
rather than the whole real line and thus considerably shortens the numerical calculations. Q 
may be interpreted as the transition probability in the case when we specify the distance of 
the hitting point fromthe left endpoint of the gate (we choose the closest one which lies to 
the left of the hitting point) but otherwise we ignore the position of the hittiilg point. This 

Let f be chosen so that 2 - f belongs to {y = 0,O < x < A + B}.  Now Q acts in 
the single gate and barrier and (4.3) can be rewritten in the following form amenable for 
numerical calculations: 

(VI (1) VI (k)h = 

is possible since the system of barriers is doubly periodic. I. I 1.; 

1 1. . . 1 J d n O ~ ( ~ 0 ~  J dm gcl - xo)~zGo, 21) 
Bo nl .B,  Bi Bb-, ni.8k A b  

(4.6) 
J X L, &QGI - X I ,  22) S, dr3Q(2Zr 23 ) .  ’. d ~ ( x k  - X ~ - I ) P Z ( ~ ~ - I , - G )  

where 01 is the stationary distribution for Q, i.e. 

(4.7) 

Here the intervals AB are as follows: A o ~ =  {x : 0 < x < A ]  and AI = A-1 = [x  : A < x i 
A + B ] .  Equation (4.4) may be expressed in a form analogous to (4.6). These equations 
are used in the next section to compute the averages numerically. Note that the integration 
over the whole real line involving P2 appears only twice in (4.6). The calculations which 
lead to (4:6) are contained in appendix B. 

5. Asymptotic formula in the case of small barriers 

We will show that when the barrier length B = E approaches zero and the period A + E  is 
kept constant then 

(Y’)(E) = 1 - eZ/(2A)  + o(&. (5.1) 

Note that the shift C does not appear in this formula. The above formula might have some 
interest as it is related to the following conjecture. Fix some planar set F with non-zero 
area. Place a copy E F  of the set F rescaled by E at each vertex of the standard two- 
dimensional lattice and let 2’ be a Brownian motion reflected from these obstacles. It has 
been conjectured that the effective diffusivity ‘of 2’ should be equal to 

I - cE2Area(F) (5.2) 

where c is an  absolute^ constant, i.e. it does not depend on the shape of F .  Note that we 
obtain the correction of order e2 in (5.1) despite the fact that line segments have zero area. 

In order to find an asymptotic formula for the effective diffusivity when the size of the 
barriers goes to zero we  change^ our sampling scheme. The position of the particle will 
be detected whenever it reaches , a  neighbouring line. The sequence of times when this 
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happens will be denoted S(O), S(1). S(2). etc. We will assume that the process starts at 
time S(0) = 0 with the initial distribution uniform on a line. The transition vector for the 
step between times S(k - 1) and S(k) will be denoted U(k) ,  i.e. 

U(k) = Z(S(k)) - Z(S(k - 1)).  (5.3) 

Recall that the size of a barrier will be denoted E rather than B.  We will suppose that the 
period A + E  is fixed and E approaches zero. Recall that 

2% 
k=I 

(5.4) 

converges to a Gaussian variable, say M = (MI, Mz). We have 

m 

( M Z M Z )  ~= (@(l))B +2~(UZ(l)uZ(k))B.  (5.5) 
k=2 

Observe that the expected value I of S(k) - S(k- 1) does not depend on the size or position 
of the barriers as long as they are confined to horizontal lines xj2 units apart. Hence 

(5.6) 

where the dependence on the parameter E is made explicit in the notation. Note that we 
always have Uz(k) = inj2.  When there are no barriers, i.e.~when E = 0, then the steps 
U(k) are uncorrelated and we obtain, from (5.5). 

(MZMZ)(O) = (U;(l))B = x2/4. (5.7) 

Now suppose that E z 0. If Z(S(1)) is in the gate then the next step may be positive 
or negative with the same probability and &(l) and Uz(2) are uncorrelated. Suppose 
that Z(S(1)) is just below a barrier. This means that the first step was upward, i.e. 
Uz(1) - Uz(0) = n/2. The steps Uz(1) and Uz(2) will not he correlated if the Brownian 
particle hits a gate on the line containing Z(S(1)) before hitting the line containing Z(S(0)) 
because in this case the next step, U2(2), between S(1) and S(2) may be positive or negative 
with the same probability. It remains to consider the case when Z(S(1)) is just below a 
barrier and the process starting from Z(S(1)) hits the line containing Z(S(0)) before hitting 
any part of the line containing Z(S(1)). In this case, the steps will be negatively correlated. 
It will be shown in appendix C that the probability of such an occurrence is equal to 
ej4 + o(E).  The probability that Z(S(1)) belongs to a barrier is equal to E / A  + O ( E )  for 
small E .  The cases when Z(S(1)) is just below a barrier and just above a barrier are 
symmetric. Hence 

(UZ(~)~Z(~))B = -(€/4 ‘r O(€))(E/A + 0(€))(Z2/4) = -(7?/4)(eZ/(4A) -I- O ( € ’ ) ) .  (5.8) 

The terms (Uz(l)Uz(k))B with k 2 2 are of order smaller than 8. we will discuss 
only (u2(1)u2(3))B. Suppose that the process is in the stationary distribution. Then the 
distribution of Z(S(1)) is uniform on a line. If Z(S(1)) belongs to a gate then Uz(1) may 
be positive or negative with the same probability and Uz(1) and Uz(3) are uncorrelated. 
The same argument applies when Z(S(2)) belongs to a gate. The only contribution to 
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(Uz(1)UZ(3))~ comes from the situation when bothZ(S(1)) and Z(S(2)) lie on barriers 
and, moreover, the process starting from Z(S(2)) hits the line containing.Z(S(1)) before 
hitting any part of the line containing Z(S(2)). The probabilities of these three events are 
€/A + o(0, €/A + &). and ~ / 4  + o(E) .  Hence 

( U Z ( ~ ) ~ Z ( ~ ) ) B  = -(nz/4)(~3/(4A2) 4- O ( E 3 ) ) .  (5.9) 

. ~ ,  It follows from (5.5) and (5.8t(5.9) that 

(MzMz) = (n2/4)(1~- 2e2/(4A) + o(E’)). (5.10) 
. .  

~ 

Thus, (5.6)~and (5.7)~ imply 

, 

6.~ Numerical’results and discussion . ’ 

In order to perform numerical calculations we have discretized the problem. The period 
A+B has been divided into 80 small intervals. The hitting probabilities~between points have 
been replaced by the hitting probabilities of a small interval for the process starting from 
themiddle of another interval (see appendix A). The transition probabilities for a single step 
have been calculated using formulae given in appendix A. They also provide probabilities 
PZ as explained in section 4. The modified probabilities Q have been calculated using (4.5). 
Equation (4.7) becomes a system of linear equations in the discrete case. The system has a 
unique solution provided~we normalize a by 1 s  SA, a(i)dx = 1. Given 01, Q and P2, we 
have used (4.6)’and an indogous formula for~(v2(1)vZ(k))B, (2.4) and (2.5) to find (Y’). 

We have done numerical calculations for several sets of parameters A,  B and C. The 
available amount of computer memory enabled us to consider periods A+B ranging between 
2 and 16. The barrier size B varied between 1/40 of period A + B and 39/40 of the period. 
We considered shifts C between 0 and 1/2 of period A + B. The results for other shifts 
may be obtained from ours by using translation invariance and/or symmetry. 

First let us discuss the case when A and B are fixed. The influence of the shift C on 
(P) is illustrated in.figure 3. In some cases (P) is amonotone function of C, for example, 
when A = 3.80, B =‘0.20 and C varies on the interval (0; 2). In figure 3(a) we have A = 8 
and B =~2.  The effective diffusivity (Y’) attains its minimum for a value C = 2.75f0.125 
and it is not a monotone function of C between 0 and one half of the period. 

The behaviour of ( Y 2 )  as a function of shift C may be even more complicated as 
illustrated by figure 3(b). Here A = 14 and B = 2 . ~  The p p h  has two local minima 
at C = 2.8 1-0.2. and C ~ = ~ 6 . 4  3 0:2,on the interval’(0, 8). The lack~of monotonicity in 
the last two cases illustrates the fact that the influence of reflecting obstacles on effective 
diffusivity is not additive. The increase or reduction of effective diffusivity is in part due to 
the ‘interaction’ between the obstacles. When A is large, the interaction between obstacles 
which are separated by two or more stripes may become important. This effect strongly 
depends~ on the configuration and may both increase or decrease as C increases. One may 
speculate that the graphs of (Yz) as a function of shift C have even more local minima 

.~ 
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Figure 3. Effective diffusivity (Y2) as B fundon of shiR C. In (Q). period A + B = 10, barrier 
B = 2, shift C is increasing from 0 to (A + B ) / 2  = 5. In (b), period A + B = 16, barrier 
B = 2, shift C is increasing from 0 to (A + B ) / 2  = 8. 

as the gate size grows and the barrier size is kept constant. Limitations on the computer 
memory prevented us from checking this conjecture. 

The asymptotic formula derived in section 5 shows that the influence of shift on effective 
diffusivity (Y’) should diminish as the size of the barrier goes to zero. This is strongly 
supported by the results obtained for parameters mentioned above. Let (Y2)““ and 
denote the maximal and minimal value of (Y’) for the given set of parameters. Let 

The value of y is 0.0044 when A = 3.80 and E = 0.20, y = 0.29 if A = 8 and E = 2, 
and y = 0.33 for A = 14 and E = 2. 

We present the comparison of the asymptotic formula (5.1) with the results of numerical 
calculations in figure 4. First we show the results for A + E  = 4, C = 0 and E = E changing 
from 0.30 to 2 in increments of 0.10 (see figure 4(a)). Formula (5.1) says that the correction 
to standard effective diffusivity is equal to eZ/(2A).  We calculated the relative error ,y of 
this correction as compared to the value of 1 - (Y’) obtained numerically, 

€‘/(2A) - (1 - (Y’)) 
K =  l-(Y’) (6.2) 

The relative error x decreases as E goes to zero (see figure 4(b)). For E around 0.30, 
the absolute value of the error x starts increasing as the size of the subdivision used for 
numerical integration becomes comparable to the size of the barrier. We find reasonably 
good agreement of theoretical predictions and numerical results. 

Let.95, summarize our results. We have studied an asymptotic distribution for a two- 
dimensiqal Bqownian p*@e in a periodic system of reflecting barriers. The motions along 
the barriers and perpendiculg to the barriers are uncorrelated. The diffusion constant in 
the direction parallel to barriers remains unchanged while the one perpendicular to barriers 
is reduced in comparison to the motion in free space. For finite size of the barriers the 
diffusion constant (perpendicular to barriers) is in general a non-monotonic function of 
tan 8 ,  where B gives the inclination of the channel formed by the barriers (figure 1). In the 
limit of vanishing banier size, E = E ,  fixed period, A +,$, and fixed distance x / 2  between 
the lines of barriers it is given by (1 - E ’ / Z A ) ~  ( t  is time) and does not depend on 8. 
We hope that the sampling method and conformal transformation method described in this 
paper will be useful for future studies of the Brownian motion. 
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Figure 4. In (a), effective diffusivity (Yz) as a function of barrier B .  Period A + B = 4, 
shiA C = 0. barrier fl increasing from 0.30 to 2. Full circles: numerical resulb. Full curve: 
asymptotic formula 1 -B2/(2A).  In (b), relative error of the approximation using the asymptotic 
formula x = ( B z / ( 2 A )  - ( I  - (YZ)))/(l - (U2)). 

Acknowledgments 

This work has been supported in part by the National Science Foundation grant DMS 91- 
00244, AMS Centennial Research Fellowship, and by Komitet Badari Naukowych (KBN) 
under grant no 2 BO2 190 04. Robert Hoiyst acknowledges with appreciation the support 
provided by the Foundation for Polish Science fellowship. We would like to thank Greg 
Lawler for most useful advice. 

Appendix A 

The numerical calculations require an integrated form of (3.1) because we divide straight 
lines into short intervals for the purpose of numerical integration. The probability that 
Brownian motion starting from (x', 0) will hit the line segment (x = O,.y' c y c: y") before 
hitting any other part of the y-axis is equal to 

We will discuss the transition probabilities corresponding to two cases in our sampling 
scheme. The first case is when the particle starts from a gate. In this case (see figure 2(u)) 
we have to calculate the probability p(x'; U', U") that a particle starting from a point (x', 0) 
will hit a line segment {y = ~ / 2 ,  U' < x c U"} before hitting any other part of the lines 
{y = & H / 2 } .  The transformation (3.3) maps (x', 0) onto (exp(x'), 0) and the line segment 
[y = n/2, U' c x < U"} onto [x =~O, exp(u') < y < exp(u")}. In view of (A.1). 

p(x'; U', U") = ;(arctan(exp(u")/exp(x')) - arctan(exp(u')/ exp(x'))) . 1 
(A.2) 
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By symmetry, the formula also applies to the case of hitting of the line segment [y = 
- x p ,  U’ < x < U”). 

Next we are going to discuss the case of the particle starting from above a barrier. 
This is equivalent (see figure 2(b)) to calculating the hitting probabilities for Brownian 
motion starting from a point (x’, 0) in the snipe {-x/2 c y c n/Z} without half-lines 
(y = 0, x < 0) and { y  = 0,x > B } .  Let pl(x’; U’, U”) be the probability that a particle 
starting from (x ’ ,  0) will hit a line segment [ y  = n/2,  U’ < x < U”] before hitting any other 
p a t  of the boundary. We obtain a formula which is analogous to (A.2) except that we  use 
(3.4) rather than (3.3) in its derivation: 

(exp(2u”) - 1) (exp(2B) - exp(2x’)) 
H (exp(2B) - exp(2u”)) (exp(2.x’) - 1) 

)] . (A.3) 
(exp(2u’) - 1) 

(exp(2B) - exp(2u’)) 
(exp(2B) - exp(2.x’)) 

(exp(2.x’) - 1) 
- arctan 

Again, the symmetry implies that (A.3) also applies to hitting of the interval [y = 

The situation is a bit more complicated when we consider the hitting of the interval 
[y = 0, U’ c x < U”} where either U” c 0 or U‘ > B .  If this interval lies on a barrier then 
(A.3) remains valid with the understanding that it represents the probability of hitting of the 
interval from one side, e.g. from above. However, if this interval lies in a gate, we have 
to double the probability given in (A.3) to account for the possibility that the particle may 
hit the interval from below or from above. We have to do so as we distinguish upper and 
lower sides of barriers but not gates. 

-zp7 U’ < x c U“}. 

Appendix B 

We will show how (4.6) may be obtained from (4.3). Recall that i is chosen so that 2 - ,? 
belongs to {y = 0,O c x c A + B } .  Note that drx, XI - xo, xk - xk-1, and Pz(x,-I, xj) for 
all j ,  will have the same values if we substimte .?j - Zo for i j  for all j = 0,1,2, etc. This 
follows from double periodicity of the system of barriers. Hence, (4.3) may be written as 

(B.1) 

Now we substitute i j  -XI for i j  for all j = 2.3, etc. Similar invariance properties imply 
that (B.1) is equal to 
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The next substitution is 2j - (22 - Ziyfor j = 3,4, etc. and also 2 2  -21 - (22 - ZJfor 
22 - PI. We obtain using the definition of Q 

(8.3) 

In order to obtain (4.6). we perform for 1 = 3,4, . . . , k - 1 substitutions of ij - Zr for 
2j for all j = 1 , 1 +  1, etc. 

Appendix C 

We will calculate the probability that a particle starting with the uniform distribution above 
a reflecting barrier of length E on the line [ y  = 0) will hit the line (y = n/2) before hitting 
any part of the line { y  = 0) outside the barrier. Recall from section 3 that this is equivalent 
to calculating the probability that a particle starting with uniform distribution in a gate of 
length E on the line (y = 0) will hit one of the lines (y = in/2)  before hitting any part 
of the line (y = 0) outside the gate. We will use the transformation (3.4) which maps the 
stripe (-n/2 < y < n/2) without two half-lines ( y  = 0, x c 0) and (y = 0, x z 6 )  onto 
the half-plane [ x  > 0). The hitting probabilities are invariant under this transformation. 
Under this transformation, the point (ps.  0) is mapped onto 

exp(2ps) - 1 J exp(2s) - exp(2ps) 

It is elementary to check that this expression converges to -J“ when E goes to 
zero. The mapping (3.4) transforms the uniform distribution in the gate into a distribution 
on the positive part of the real line. Let J have this last distribution. The probability that 
the starting point in the gate lies to the left of pc is equal to p so the probability that J lies 
to the left of 4- is also equal to p ,  i.e. 

P ( J  < m) = P .  

Let x = ,/-. Then p = x 2 / (  1 + x z )  and (C.2) may be expressed as 

P ( J  < x )  = x2/(1 fx’). (C.3) 

The density of J is equal to 

d 2x 
-P(J  < x )  = 
dx (1 + X*)2 ’ 

The transformation (3.4) maps the lines {y = i n /2 )  onto line segments ( x  = 0, e-< < 
y < 1) and (n = 0, -1 4 y < -e-‘]. According to (BJ), the probability of hitting one 
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of these segments before hitting any other part of the y-axis while starting from ( x ,  0) is 
equal to 

(Z/x)(arctan(l/x) - arctan(e-'/x)) . (C.5) 

Since e-( = 1 - E + O ( E )  the last expression is approximately equal to 

(Z/x)(arctan(l/x) -~a.rcta.n((l- E ) / x ) )  . 
We have 

Hence, (C.6) is approximately equal to 

2EX 

x(1 + X 2 ) .  

The desired probability is obtained by integrating this probability over the positive real axis 
with the density function (C.4). We obtain 

x=m 
X - + arctan(x)/8 

46 X - _  
- P ( 8 ( 1 + x 2 )  4 ( 1 + ~ ~ ) ~  
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